3.131 \(\int \frac{(a+b x)^5 (A+B x)}{x^7} \, dx\)

Optimal. Leaf size=85 \[ -\frac{5 a^2 b^3 B}{x^2}-\frac{10 a^3 b^2 B}{3 x^3}-\frac{5 a^4 b B}{4 x^4}-\frac{a^5 B}{5 x^5}-\frac{A (a+b x)^6}{6 a x^6}-\frac{5 a b^4 B}{x}+b^5 B \log (x) \]

[Out]

-(a^5*B)/(5*x^5) - (5*a^4*b*B)/(4*x^4) - (10*a^3*b^2*B)/(3*x^3) - (5*a^2*b^3*B)/x^2 - (5*a*b^4*B)/x - (A*(a +
b*x)^6)/(6*a*x^6) + b^5*B*Log[x]

________________________________________________________________________________________

Rubi [A]  time = 0.0345449, antiderivative size = 85, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {78, 43} \[ -\frac{5 a^2 b^3 B}{x^2}-\frac{10 a^3 b^2 B}{3 x^3}-\frac{5 a^4 b B}{4 x^4}-\frac{a^5 B}{5 x^5}-\frac{A (a+b x)^6}{6 a x^6}-\frac{5 a b^4 B}{x}+b^5 B \log (x) \]

Antiderivative was successfully verified.

[In]

Int[((a + b*x)^5*(A + B*x))/x^7,x]

[Out]

-(a^5*B)/(5*x^5) - (5*a^4*b*B)/(4*x^4) - (10*a^3*b^2*B)/(3*x^3) - (5*a^2*b^3*B)/x^2 - (5*a*b^4*B)/x - (A*(a +
b*x)^6)/(6*a*x^6) + b^5*B*Log[x]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{(a+b x)^5 (A+B x)}{x^7} \, dx &=-\frac{A (a+b x)^6}{6 a x^6}+B \int \frac{(a+b x)^5}{x^6} \, dx\\ &=-\frac{A (a+b x)^6}{6 a x^6}+B \int \left (\frac{a^5}{x^6}+\frac{5 a^4 b}{x^5}+\frac{10 a^3 b^2}{x^4}+\frac{10 a^2 b^3}{x^3}+\frac{5 a b^4}{x^2}+\frac{b^5}{x}\right ) \, dx\\ &=-\frac{a^5 B}{5 x^5}-\frac{5 a^4 b B}{4 x^4}-\frac{10 a^3 b^2 B}{3 x^3}-\frac{5 a^2 b^3 B}{x^2}-\frac{5 a b^4 B}{x}-\frac{A (a+b x)^6}{6 a x^6}+b^5 B \log (x)\\ \end{align*}

Mathematica [A]  time = 0.037397, size = 109, normalized size = 1.28 \[ -\frac{100 a^2 b^3 x^3 (2 A+3 B x)+50 a^3 b^2 x^2 (3 A+4 B x)+15 a^4 b x (4 A+5 B x)+2 a^5 (5 A+6 B x)+150 a b^4 x^4 (A+2 B x)+60 A b^5 x^5-60 b^5 B x^6 \log (x)}{60 x^6} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x)^5*(A + B*x))/x^7,x]

[Out]

-(60*A*b^5*x^5 + 150*a*b^4*x^4*(A + 2*B*x) + 100*a^2*b^3*x^3*(2*A + 3*B*x) + 50*a^3*b^2*x^2*(3*A + 4*B*x) + 15
*a^4*b*x*(4*A + 5*B*x) + 2*a^5*(5*A + 6*B*x) - 60*b^5*B*x^6*Log[x])/(60*x^6)

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 124, normalized size = 1.5 \begin{align*}{b}^{5}B\ln \left ( x \right ) -{\frac{10\,{a}^{2}{b}^{3}A}{3\,{x}^{3}}}-{\frac{10\,{a}^{3}{b}^{2}B}{3\,{x}^{3}}}-{\frac{{a}^{4}bA}{{x}^{5}}}-{\frac{{a}^{5}B}{5\,{x}^{5}}}-{\frac{5\,{a}^{3}{b}^{2}A}{2\,{x}^{4}}}-{\frac{5\,{a}^{4}bB}{4\,{x}^{4}}}-{\frac{5\,a{b}^{4}A}{2\,{x}^{2}}}-5\,{\frac{{a}^{2}{b}^{3}B}{{x}^{2}}}-{\frac{A{a}^{5}}{6\,{x}^{6}}}-{\frac{{b}^{5}A}{x}}-5\,{\frac{a{b}^{4}B}{x}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^5*(B*x+A)/x^7,x)

[Out]

b^5*B*ln(x)-10/3*b^3*a^2/x^3*A-10/3*a^3*b^2*B/x^3-a^4/x^5*A*b-1/5*a^5*B/x^5-5/2*a^3*b^2/x^4*A-5/4*a^4*b*B/x^4-
5/2*a*b^4/x^2*A-5*a^2*b^3*B/x^2-1/6*A*a^5/x^6-b^5/x*A-5*a*b^4*B/x

________________________________________________________________________________________

Maxima [A]  time = 1.02222, size = 159, normalized size = 1.87 \begin{align*} B b^{5} \log \left (x\right ) - \frac{10 \, A a^{5} + 60 \,{\left (5 \, B a b^{4} + A b^{5}\right )} x^{5} + 150 \,{\left (2 \, B a^{2} b^{3} + A a b^{4}\right )} x^{4} + 200 \,{\left (B a^{3} b^{2} + A a^{2} b^{3}\right )} x^{3} + 75 \,{\left (B a^{4} b + 2 \, A a^{3} b^{2}\right )} x^{2} + 12 \,{\left (B a^{5} + 5 \, A a^{4} b\right )} x}{60 \, x^{6}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^5*(B*x+A)/x^7,x, algorithm="maxima")

[Out]

B*b^5*log(x) - 1/60*(10*A*a^5 + 60*(5*B*a*b^4 + A*b^5)*x^5 + 150*(2*B*a^2*b^3 + A*a*b^4)*x^4 + 200*(B*a^3*b^2
+ A*a^2*b^3)*x^3 + 75*(B*a^4*b + 2*A*a^3*b^2)*x^2 + 12*(B*a^5 + 5*A*a^4*b)*x)/x^6

________________________________________________________________________________________

Fricas [A]  time = 1.76978, size = 270, normalized size = 3.18 \begin{align*} \frac{60 \, B b^{5} x^{6} \log \left (x\right ) - 10 \, A a^{5} - 60 \,{\left (5 \, B a b^{4} + A b^{5}\right )} x^{5} - 150 \,{\left (2 \, B a^{2} b^{3} + A a b^{4}\right )} x^{4} - 200 \,{\left (B a^{3} b^{2} + A a^{2} b^{3}\right )} x^{3} - 75 \,{\left (B a^{4} b + 2 \, A a^{3} b^{2}\right )} x^{2} - 12 \,{\left (B a^{5} + 5 \, A a^{4} b\right )} x}{60 \, x^{6}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^5*(B*x+A)/x^7,x, algorithm="fricas")

[Out]

1/60*(60*B*b^5*x^6*log(x) - 10*A*a^5 - 60*(5*B*a*b^4 + A*b^5)*x^5 - 150*(2*B*a^2*b^3 + A*a*b^4)*x^4 - 200*(B*a
^3*b^2 + A*a^2*b^3)*x^3 - 75*(B*a^4*b + 2*A*a^3*b^2)*x^2 - 12*(B*a^5 + 5*A*a^4*b)*x)/x^6

________________________________________________________________________________________

Sympy [A]  time = 3.6827, size = 122, normalized size = 1.44 \begin{align*} B b^{5} \log{\left (x \right )} - \frac{10 A a^{5} + x^{5} \left (60 A b^{5} + 300 B a b^{4}\right ) + x^{4} \left (150 A a b^{4} + 300 B a^{2} b^{3}\right ) + x^{3} \left (200 A a^{2} b^{3} + 200 B a^{3} b^{2}\right ) + x^{2} \left (150 A a^{3} b^{2} + 75 B a^{4} b\right ) + x \left (60 A a^{4} b + 12 B a^{5}\right )}{60 x^{6}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**5*(B*x+A)/x**7,x)

[Out]

B*b**5*log(x) - (10*A*a**5 + x**5*(60*A*b**5 + 300*B*a*b**4) + x**4*(150*A*a*b**4 + 300*B*a**2*b**3) + x**3*(2
00*A*a**2*b**3 + 200*B*a**3*b**2) + x**2*(150*A*a**3*b**2 + 75*B*a**4*b) + x*(60*A*a**4*b + 12*B*a**5))/(60*x*
*6)

________________________________________________________________________________________

Giac [A]  time = 1.26332, size = 161, normalized size = 1.89 \begin{align*} B b^{5} \log \left ({\left | x \right |}\right ) - \frac{10 \, A a^{5} + 60 \,{\left (5 \, B a b^{4} + A b^{5}\right )} x^{5} + 150 \,{\left (2 \, B a^{2} b^{3} + A a b^{4}\right )} x^{4} + 200 \,{\left (B a^{3} b^{2} + A a^{2} b^{3}\right )} x^{3} + 75 \,{\left (B a^{4} b + 2 \, A a^{3} b^{2}\right )} x^{2} + 12 \,{\left (B a^{5} + 5 \, A a^{4} b\right )} x}{60 \, x^{6}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^5*(B*x+A)/x^7,x, algorithm="giac")

[Out]

B*b^5*log(abs(x)) - 1/60*(10*A*a^5 + 60*(5*B*a*b^4 + A*b^5)*x^5 + 150*(2*B*a^2*b^3 + A*a*b^4)*x^4 + 200*(B*a^3
*b^2 + A*a^2*b^3)*x^3 + 75*(B*a^4*b + 2*A*a^3*b^2)*x^2 + 12*(B*a^5 + 5*A*a^4*b)*x)/x^6